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MODELING THE TURBULENT TRANSPORT OF AN IMPULSE IN THE WAKE OF A 

CYLINDER WITH THE USE OF EQUATIONS FOR THIRD MOMENTS 

A. F. Kurbatskll and A. T. Onufriev UDC 532.517.4 

I. One trend in modern phenomenological theory of turbulent transport is the formulation 
of a system of equations for the moments of the hydrodynamic fields of a turbulent flow, the 
maximum order of which is usually predicted with the aid of both physical considerations and 
the chosen method of closing the system. Models of turbulent transport have recently been 
proposed that are closed at the level of second moments -- in which the unknowns are second 
moments -- and in which third moments are modeled on the basis of heuristic considerations. 
Equations for moments of higher order are ultimately attractive for the reason that, in a 
whole range of physical problems, the turbulent transport of impulses, heat, or scalar prop- 
erties cannot be correctly described within the framework of the simplest flrst-order gradient 
models (such as the Prandtl theory of displacement paths). Such problems are not the excep- 
tion, and several of them may be found in [1-4]. An example of a model of turbulent trans- 
port closed at the level of the second moments (second-order model) would be the model [5] in 
which the turbulent flows (i.e., the second moments of turbulent fluctuations) are closed by 
means of the use of the method of the kinetic theory of gases in connection with third moments. 
Here, in essence a rough analogy is being made with kinetic theory, with the following Justi- 
fication: if a rough approximation for second-order moments makes it possible to compute 
first-order values in the simplest cases (this is true with the simplest phenomenological 
models of turbulent transport, based on the length of displacement paths), then it is pos- 
sible that similar coarse approximations will make it possible to correctly predict second 
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moments. Despite the fact that the use of second-order models has made it possible to cor- 
rectly describe turbulent transport in problems for which the simplest phenomenological 
models of transport have proved inadequate, all second-order models have a basic shortcoming: 
they do not provide an efficient method of computing third moments. 

The results obtained thus far in the numerical modeling of turbulent transport by means 
of second-order transport models for several specific physical problems (see, e.g., [4-8]) 
provide a basis for concluding that many phenomena of turbulent transport in a developed 
(three-dlmenslonal) turbulence may be correctly described if third moments describing the 
processes of turbulent diffusion of this or that second moment of a hydrodynamic field 
(velocity, concentration, temperature, salinlty~ etc.) are included as unknowns in the tur- 
bulent transport model in a physically consistent manner. This would make it possible to 
surmount the obstacles connected with gradient models of turbulent transport in problems 
in which the temporal and spatial scales of turbulent movement are not small in relation to 
the temporal and spatial scales of the average movement (gradient models of transport assume 
that the turbulent scales are small compared to the scales of the average movement). One of 
the many examples of the unfitness of the gradient transport mechanism is the surface layer 
of the earth's atmosphere, mixed by turbulent convection (buoyancy forces). In this case, a 
gradient model of turbulent transport would not even be qualitatively correct in predicting 
either the distribution of divergences of the turbulent energy flow across this layer or the 
distribution of the flow itself -- these are distributions that are actually observed in the 
atmosphere (see, e.g., [2-4]). It may be noted that there is presently a lively discussion 
going on relative to the question of the fitness of the gradient mechanism of turbulent trans- 
port [i, 9, i0]. 

Flow in the wake of a cylinder at large Reynolds numbers is also a case where the grad- 
lent mechanism of transport "doesn't work," at least in part of this flow [ii]. According 
to the empirical data of Townsend [12] D in the far region of the wake, where the statistical 
characteristics of the velocity field of the wake (second and third moments) are in an ap- 
proximately similar condition, close to the axis of the wake there is a small region in which 
the density of the transverse component of a turbulent flow of longitudinal intensity <u'~>, . 
i.e., the quantity <u'~v'> has the same sign as the gradient of this intensity 3<u'~>/3y, so 
that close to the axis of the wake the longitudinal intensity will go in the direction of an 
increase in the gradient. 

2. A model equation for the probabillty density of the velocity field proposed in [13, 
14] has been written with allowance for pulsations of temperature and impurity concentration 
for an incompressible fluid (the equation and the assumptions on which it is based are ex- 
plained in detail in [14]). The system of equations for the moments of the velocity field 
of a developed free turbulent flow, resulting from the transport equation derived from the 
above model equation for velocity field probability density, has the form 

O <u~> = O; (2 .  l )  
ax~ 

/ , t \ -  I 
O <u=> O [<uk > <ua> -F \ u t ,  u a f l  = O; ( 2 . 2 )  a---r- 

at + oz h [ luh2  \ u a u ~ / J r "  \u~u~uf~ /J  + \ u k u ~ /  #z~ ( 2 . 3 )  

. / , , \  O(uct> = 2 v , /  , , \  v . , [<  , , 2 ] 

.-~ \ u k u ~ /  o~ k - -  T "  \ u ~ u ~ / - -  ~ -  u~u'~> --  y E ~  ; 
/ t t t ~  

o < . , , ~ . ~ , , ~ , / +  a . .  , , , \  . ,  , , , . .  a < ~ , , >  

~t ~ <uD <,u~,u~u~/+kuhu~u~2 a~ k (2.4) 
/ , , , \ a ( u ~ ) _ / . , . , . , \ o < u v >  / , , \  a / , , \  
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The angular brackets in gqs. (2.1)-(2.4) are used to denote mean values, while the quote 
marks denote turbulent fluctuations of velocity field components. Relaxation time T = AL/~, 
where E = 1/2<U'kU'k> is the density of the energy of the turbulence; L is the integral scale 
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of the turbulence. Empirical constants A, ~, and ~a were determined from an examination of 
several particular cases [15] and do not change in the calculation of more complex flows [8] 
(A ~ 4, ~, ~ 1/2, ul ~ 1). 

The system of equations for the moments (2.1)-(2.4) is not closed. Besides the fourth 
moment, appearing in the equation for the third moments (2.4), the scale of turbulence L re- 
mains as yet undetermined. TO close system (2.1)-(2.4)(i.e., relate the fourth moments to 
the second) we used two approximations: Millionshchikov's hypothesis of quasinormality, and 
the method of thirteen moments of the kinetic theory of gases [16]. The former has been sub- 
stantiated for the case of homogeneous turbulence [17]. It is evidently difficult ~o give 
strict proof that Millionshchikov's hypothesis can be correctly used for inhomogeneous tur- 
bulent flows, i.e., to guarantee that the third moments never exceed their physically pos- 
siblevalues. However, it remains a fact that, given a physically correct approximation of 
the correlation between the pressure and velocity pulsation gradient, it is possible in dlf- 
ferenttypes of turbulent transport problems to obtain results in which nonphysical behavior 
of such different statistical characteristics as velocity field [5-8] and concentration field 
[8] is absent. To this may be added the fact that third moments differing from zero indicate 
a non-Gaussian distribution of probabilities, although, as noted in [4], if an expansion of 
perturbations about an equilibrium Gaussian distribution is used, it turns out that the re- 
laxation time for third moments is about 20% of the relaxation time for second moments. Thus, 
if the relaxatiOn time for each subsequent cumulant if less percentagewise, then it is Justi- 
fiable to use the hypothesis of fourth moments if the deviation from the state of equilibrium 
is not too large. As is known, Millionshchikov's hypothesis is purely statistical in nature 
and is is no way connected with the specific mechanism of (turbulent) transport. 

On the other hand, an analogy with molecular transport lles at the basis of the approach 
to the theory of turbulent transport founded on the use of equations to determine the common 
probability densities of the pulsations of the fields in question. It is useful to take this 
analogy somewhat further. Based on the empirical fact that the magnitude of the displacement 
path (or scale of correlation) is not small compared to the characteristic scale of the entire 
flow, an analogy should be made with molecular transport at large free paths. In this case, 
Fick's law for heat flow is already no longer valid, nor is Stokes' theological equation of 
state for frictional stresses compared to the limiting laws at short free-path lengths. In 
the kinetic theory of gases, the transport equation for long free paths may be, e.g., the equa- 
tion for stress tensors in the r-approximation or thirteen-moments approximation [16]. Here, 
the stress tensor is the dependent variable, satisfying a first-order differential equation 
in partial derivatives. Using Grade's method, a closed system of equations of thirteen moments 
was obtained with a cut-off of the expansion of the distribution function into a series of 
Hermite polynomials at the third term, from which the relationship between the fourth and 
second moments follows. In the case of turbulent flow, this relationship takes the form 

\ u a u ~ u ~ u ~ /  = / . . . .  \ h ~ (6~6k~ + ~h6~v + ~v6gk) 

+ h {Sk~ , /  ' ' \  --  h6~ff) + 6~'t\uau~//" ' \  - -  h6~)  + 6~ (<u~u~>' ' -- h6a~) (2 .5)  t \ uau f i~  

+ - + - hs v) + - 

where h = 2E/3.  

According to Millionshchikov's hypothesis, the fourth moments of the velocity field are 
expressed through the second by means of formulas that are valid for a normal distribution: 

. # # # 1  ##  t l  # #  I #  I #  I 1  

<u~u~uvuD = <u~u~> <uvuD § <u~u~> <u~uD § <u~uv>. (2.6) 

E i t h e r  Eq. (2 .5)  or  Eq. (2~6) c l o s e s  ( f rom t h e  p o i n t  of  v iew o f  d e t e r m i n i n g  t h e  s c a l e  of  
turbulence L) the system of equations for the velocity field moments (2.1)-(2.4). 

All of the above concerning two possible methods of closing the system of equations for 
the moments of the velocity field of a developed, inhomogeneous turbulent flow provides a 
basis for proposing that it is of interest on its own account to compare both methods of 
closure in a problem where:the turbulent flow is nongradient (nonderivative) in nature. The 
problem of flow in the wake of a cylinder is an appropriate and simple example (although it 
is not that simple as far as its mathematical realization is concerned). 

Sequential development of a model of turbulent transport based on an equation for a 
single-point probability density (in the r-approximation) also requires a sequential method 
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of determining the scale of turbulence L within the framework of the model. For this scale 
to he interpreted as a correlation scale, within the limits of which an element of the fluid 
executes correlated pulsation in the surrounding medium, we have to examine an equation for 
a two-point density probability. This is one of the problems associated with the given trans- 
port model and which has yet to be fully resolved, i.e., no equation in realizable form has 
been derived for a two-polnt probability density. Thus, in solving the problem of flow in 
the wake of a cylinder (as with other similar problems of free turbulence), the expression 
for the scale of turbulence L may be chosen to have a form in accordance with a similar flow 
structure observed empirically. Only one scale magnitude is used. 

3. System of equations (2.1)-(2.4), for the problem of flow in the wake of a cylinder 
(Fig. i), may be written in an approximation of a boundary layer, while the equation of motion 
may be written in linearized form in the absence of a pressure gradient. These are conven- 
tional approximations in the problem of a flat wake in an incompressible fluid [12]. Inter- 
ruptions in the flow are not considered. For the flow in the wake, Eqs. (2.2) and (2.3) take 
the form 

o <.> + U~ az =-- < u' v' > , 

U~ o <u'v'>ox + <v'~> OOy<U> " Oya <u,v,~> 2~1~+ v~ <u'v'>, 

<v'~> _ o<v's> 2~t(v,~>._T(<.'% .,~. 
u~~ o~ ay T (3.l) 

]--h), 

2v 1 
- '~" '~" ( < u : ' >  - -  h )  - -  2 < u ' v ' >  U,~ o < . ' D  __ o <u'~v'> - -  -7- <~ ] - -  - 7  '~-u ' 

o <u> 

Oz ay 

, =--T<w ; T(< + u ~ Ox - -  ~I 

The equations for the third moments, closed by means of Eq. (2.6). have the form 
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0--7-- + 3 <v"~> 0--7- = 
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U~ o <w'%'> o <w'~> 3v~ -- a ~  -~- <v'2> ag ' 2 ] T ' 

a <~'r ~ --=--(3 v1+ U~ ax + <u'v'> + 2 <v'~> a <u'v'> + <v,3> a <u> 3~'0+ 1 <t,!2> 
Oy 8y 2 ] x, " 

The equations for the third moments, closed by means of Eq. (2.5), are written in the form 
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Thus, in both cases of closure we obtain a system of nine differential equations for nine un- 
known functions. For convenience in further calculations, this system will henceforth be 
written in vector form (identical for both methods of closure) 

au ~ = ~ ( u ) ,  
Oz -~a(u)-~y (3.4) 

where u = l l<u>, <u'v'>,<u'~>, <v'2>, <w'2>, <u'2v'>, <v''>, <w'2v'>, <u'v'2>]l is the un- 
known nine-component vector; A(u) is a ninth-order square asymmetrical matrix; f(u) is the 
right side, algebraically nonlinear relative to the unknown vector. Matrix A(u) and vector 
f(u) may be constructed in an obvious way from systems (3.1), (3.2) and (3.1), (3.3) so that 
their specific form does not have to be shown here. 

In both cases, closure by the method of thirteen moments (system (3.1), (3.3)), and 
closure using the hypothesis of quasinormality (system (3.1), (3.2)), Eq. (3.4) is of the 
hyperbolic type: it is associated with actual multiple characteristics. In the case of 
closure usi~ the hypothesis of quasinormality, Eq. (3.4) has the characteristics: XI (~dx/ 
dy) = i//<vT2> (quadruple), X2 = i//~v 7-~ (double), and three actual characteristics deter- 
mined by cubic equation X s + (3<v'~>/<v'3>)l 2 -- (I/<v'3>) = 0. (In the case of closure by the 
thirteen-moments method, the characteristic equation for (3.4) has a complicated form, and the 
calculation of all characteristics in explicit form is difficult). 

Due to the symmetry of the wake, we need only examine one of its halves. On the symmetry 
axis (at y = 0 (see Fig. i)), the boundary conditions have the form 

o<u> = 0 ,  <u'v'>=O, - - = 0  ( i = t , 2 , 3 ) ,  O<u'v'~>/Og=O, 
Og Og 

<u~v'> = O, 

At y § ~, the unknown vector u should satisfy the homogeneous boundary condition. 

To solve Eq. (3.4) (with both methods of closure), we used the method of finite dif- 
ferences. We used an implicit difference scheme of the "predictor--corrector" type [18, 19]. 
The "corrector" (explicit recalculation) in this scheme is realized in the form of a "law of 
conservation" for Eq. (3.4) within the limits of the difference cells of the calculating 
grid. The difference analog of Eq. (3.4) at the "predictor" step has the form 

A ~ u ~ §  = D~, (3.5) 

where A, C, and C are ninth-order square matrices; D is a nine-component vector. To convert 
the matrix in solving Eq. (3.5) by the method of matrix playing, a technique is used that is 
more economical than transformation with the selection of a principal element. The technique 
is based on the obvious fact that, by virtue of the physical postulation of the original 
problem itself for Eq. (3.4), the transformed matrix should not be poorly defined (the coef- 

741 



o,o<s! ! 

�9 7i 
0 

m : N , /  i ' \  ! I 

\ d l  %. ;' I 
A"- , , , \  ~ '..~ I I 

~;, . - ' .  j . ,  i O ,  O ~ 4  
; \i\ \ ~. , 

i \k ",1~:~. 1 
i "~ "~ 't< i 

0 2,0 

r - - - -  Cw '~) 

0,04 [ I \-~. >,,,q 

. 0  ! t 
1 
1 
i 

2 , 0  

v I 
,I 

0 5o 

Fig ' Fig. 4 5 

o, oo4 

0 

-0,002 

ficients of the difference operator should not be confluent over the entire range of integra- 
tion). The matrix therefore need not be transformed, and instead we can select its main ele- 
ment each time. The matrix can be transformed sequentially, by columns. As noted in [8], in 
the case of transforming a fourth-order matrix using the "by-column" method, the computing 
time(in the game algorithm) can be reduced by roughly 1.5 times compared to standard proce- 
dures presently available for transforming matrices with the selection of a main element. 
Here, as numerical experiments with fourth-order matrices have shown, four significant digits 
of the inverse matrix prove identical in both methods of transformation. The difference 
scheme used in this case is implicit, and the fact of its absolute computational stability 
has been confirmed by experiment (the performing of calculations with different ratios of 
difference-grid spacings). 

The expression for the scale of turbulence was chosen on the basis of considerations of 
the number of dimensions and the similarity with an empirically observed flow structure [12], 

L = k S ,  

where k ~ 0.3 is an empirical constant; 6 is the conditional width the wake -- the distance 
between points at which the speed is half of the maximum. 

4. Equation (3.5) was solved on a rectangular grid with spacings Ax and Ay in the direc- 
tion of axes x and y (see Fig. I) and the addition of grid elements during the calculation as 
a result of expansion of the wake, with an increase in the x coordinates. The size of the 
spacings was chosen so as to maintain the accuracy of the solution. 

The numerical results are shown in Figs. 2-6. All functions have been normalized by 
means of the magnitude of the velocity defect on the wake axis. Dimensionless coordinate 
represents the ratio of lateral coordinate y to the conditional width of the wake 6. Town- 
send's empirical points [12] are shown by the solid llne in Figs. 2-6, while the dashed llne 
shows the numerical results with closure by the hypothesis of fourth moments and the dot-and- 
dash line shows the results with closure by the method of thirteen moments. All curves per- 
tain to the section of the wake x/d = 525, where the second and third moments reach approxi- 
mately the same states (over a distance of 50 spacings, from x/d ~ 475 to x/d ~ 525, the 
second moments in the numerical solution changed within 1%, while the third moments changed 
within 3%). Figure 3 shows the longitudinal intensity of the turbulence <u 'i> and the dif- 
fusion of this intensity in the transverse direction <u'2v '>. First of all, the results of 
the calculations are similar using both methods of closure, but the point on axis q where the 
numerical solution for the third moment <u'av '> vanishes does not coincide with the point on 
the axis B where <u'i> assumes a maximum value. Secondly, although these points are displaced 
in the numerical solution to the right (toward the outer boundary of the wake) compared to 
similar empirical points, their mutual shift is similar to that seen experimentally. This 
provides a basis for concluding that the phenomenon of apparent "negative" viscosity relative 
to the process of diffusion of the intensity of the turbulence, observable experimentally in 
the axial zone of a flat wake, may be described on the basis of a model of transport in which 
the third moments are the unknown functions and are determined from corresponding differential 
equations of conservation. It may be noted that numerical results for the second moments of 
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velocity field pulsation in a flat wake were obtained earlier in [5] on the basis of the 
transport model discussed in Part I. Here (in Part i) it was assumed that any third moment 
can be expressed in the form of a gradient of second moments (closure hypothesis). However, 
in the numerical results shown in [5] there are no data on third moments or their comparison 
with empirical data. Figures 4-6 show the results of the numerical solution and its compari- 
son with empirical points for the lateral intensity of the turbulence <v'2>, its third 
moment (Fig. 4) for the intensity of turbulence <w'2> in the direction from the z axis (see 
Fig. I), and its third moment (Fig. 5). Figure 6 shows the results for rate of turbulence 
energy dissipation e = 2~E/T. It is apparent that the peak of the dissipation curve of the 
numerical solution is shifted from the axis. This is evidently connected with the exces- 
sively isotropic nature of the expression for this quantity, failing to account for the anl- 
sotropic character of flow close to the axis. From the hypothesis of self-similarity, it 
follows that in using only one value of scale L(L = L(x)) and velocity Uo(Uo = Uo(x)), sys- 
tems of equations (3.1), (3.2) and (3.1), (3.3) permit a self-similar solution. It follows 
then from the corresponding conditions of self-similarlty that the velocity defect on the 
wake axis Uo and the conditional width of the wake ~(=L/k) change with the distance x down- 
flow thus 

Uo/U~ = coly/'xT"d, 6/d = (cl/k)V x/d. (4. i) 

The empirical data in [12] provides evidence of the validity of self-similar expressions 
(4.1) for distances x/d > I00. The constant coefficients in Eqs. (4.1), found on the basis 
of this empirical data, are equal to: co ~ 0,93, (c~/k) ~ 0.19. In the numerical calculation, 
we obtained the same laws (4.1) of change in Uo and ~ with distance x, with the numerical co- 
efficients having been equal to: co ~ i, c~ ~ 0.06. 
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FORMATION OF SUPERSONIC MOLECULAR BEAMS BY MEANS OF A SKI~4ER 

A. E. Zarvin and R. G. Sharafutdinov UDC 539.198:533.6.0118 

One of the main problems in forming a molecular beam from a supersonic stream of low- 
density gas by the method in [i] is eliminating the distortions that arise from the interac- 
tion of the (forward) flowing stream with the skimmer. 

Most investigations (see surveys [2, 3]) have been devoted to studying distortions of 
the intensity (density) of the molecular beam, while at the same time there has been almost 
no study in the literature of the effect of the skimmer interaction on the molecular velocity 
distribution function or its normalized moments (velocity of the flow and the forward-moving 
temperature). This reflects the narrow focus of the above studies, the principal purpose of 
which was to obtain molecular beams with extreme parameters: maximum intensity and minimum 
divergence [4]. 

One important recent trend is the investigation of relaxation processes in supersonic 
streams using a molecular beam [5, 6]. Thus, the study of mechanisms leading to distortions 
of velocity distribution functions and the search for conditions under which such distortion 
will not occur are prerequisite to expanding the scope of such investigations. 

The present work is devoted to analysis and generalization of the results of experimental 
studies of the effect of skimmer interaction on the velocity distribution function conducted 
by the authors on a low-density gasdynamic tube at the Institute of Thermophysics of the 
Siberian Department of the Soviet Academy of Sciences equipped with a molecular-beam system 
[7]. The system has an apparatus providing for measurement of both parall~l T H (time-of- 
flight method of [8]) and perpendicular T I (electron-beam method of [9]) temperature. In 
all of the experiments, the working gas was commercially pure nitrogen. 

i. The aim of the first series of measurements was to find the conditions under which 
the forward-moving temperature T would not be distorted by the interaction of the flowing 
stream with the skimmer. We made measurements of transverse profiles of the density of the 
molecular beam with a wide range of nozzle-skimmer distances x/d,, stagnation pressure po, 
and the diameters of the inlet cross section of the skimmer d s. In this work, the stagnation 
temperature was To = 293~ the diameter of the nozzle throat d, was 2.11 mm. The design and 
dimensions of the skimmers used are detailed in [7]. We used the transverse profiles to 
determine density on the axis of the molecular beam nb and the.velocity relation SI. The 
perpendicular temperature T I was computed from S• on the assumption that the hydrodynamic 
velocity was equal to the limiting velocity of the flow for known stagnation conditions. 
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